A ten-year global record of absorbing aerosols above clouds from OMI's near-UV observations

Hiren Jethva^{1, 2}, Omar Torres², Changwoo Ahn³

¹Universities Space Research Association, Columbia, MD 21044 USA, ²NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA,

³Science Systems and Applications, Inc., Lanham, MD 20706, USA,

hiren.t.jethva@nasa.gov

Presented at Yoram Kaufman Symposium

SSA

We introduce a novel product of the optical depth of absorbing aerosols above clouds retrieved from OMI's near-UV observations. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' in the near-UV region, which can be unambiguously detected in the OMI measurements. This forms the physical basis of the algorithm, which retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. Results from a ten-year global record including regional and global climatology, time-series, and trend analysis of the derived parameters, validation activities, and future field campaigns will be presented.

The OMACA (OMI Above-cloud Aerosol) Algorithm

• The presence of absorbing aerosols above cloud decks reduces the amount of upwelling ultraviolet (UV), visible (VIS), and shortwave infrared radiation reaching the top of atmosphere and produces a strong color ratio effect in the spectral reflectance measurements. This is often referred to as "cloud darkening"—an effect caused by the spectral aerosol absorption.

• The CR technique employs reflectance measurements at TOA in two channels, 354 and 388 nm of OMI to retrieve above-cloud AOD and aerosol-corrected cloud optical depth at 388 nm, simultaneously. A Global OMI Above-cloud Aerosol (ACA) Algorithm - OMACA

Seasonal Cloudy-sky Frequency of Occurrence of Above-cloud Absorbing Aerosols

Two-parameter approach to identify the presence of absorbing aerosols above cloud: Lambertian Equivalent Reflectivity or LER can distinguish clear-sky from cloud-sky and UV Aerosol is an excellent indicator of the presence of absorbing and/or elevated aerosol layers.

Seasonal Climatology of Above-cloud AOD (388 nm)

Year

Possible Sources of Uncertainty

ACAOD388 Aug 12, 2006 % Change ACAOD388 Δ SSA = -0.03

% Change ACAOD388 Δ SSA = +0.03

SSA at 354 and 388:

Aerosol Layer Height:

Aerosol size distribution:

distribution

Standard OMAERUV aerosol models

Regional daily representation using cloud-free standard OMAERUV SSA

Currently based on the 30-month OMI-CALIOP joint observations

Cloud droplet distribution: C1 cloud model with modified Gamma

TABLE 2. Percentage error in retrieved AOD and COD associated with the uncertainty of the prescribed values of Z, SSA, and AAE.

	AOD = 0.5, COD = 5		AOD = 0.5, COD = 10	
	AOD	COD	AOD	COD
$Z_{\rm und} (2 \text{ km})$	40	4	26	9
$Z_{\rm ovr} (2 \text{ km})$	-19	-1	-12	-3
SSA_{und} (0.03)	-25	4	-23	1
SSA_{ovr} (0.03)	48	-5	43	-1
AAE_{und} (0.4)	23	3	19	14
AAE_{ovr} (0.4)	-14	-1	-65	-5

Preliminary Analysis of Radiative Effects of Above-cloud Aerosols CERES SW fluxes on OMI footprint

References

- Torres, O., H. Jethva, and P. K. Bhartia (2012), Retrieval of aerosol optical depth above clouds from OMI observations: Sensitivity analysis and case studies, J. Atmos. Sci., 69, 1037–1053, doi:10.1175/JAS-D-11-0130.1
- Hiren Jethva, Omar Torres and Changwoo Ahn, "A ten-year global record of absorbing aerosols above clouds from OMI's near-UV observations", Proc. SPIE 9876, Remote Sensing of the Atmosphere, Clouds, and Precipitation VI, 98761A (May 5, 2016); doi:10.1117/12.2225765; http://dx.doi.org/10.1117/12.2225765