Studies of Aerosol-Cloud Interactions with Observations and Cloud-Scale Simulations

Andy Ackerman and Ann Fridlind Goddard Institute for Space Studies

Source: Patrick Minnis, NASA/LaRC

Distributions of Lidar Reflectivity Measured by Cloud Physics Lidar (CPL) over Marine Boundary Layer Warm Clouds

• Lidar reflectivity integrated over 0-5 km altitude

- Distribution does not show "Köhler gap" separating clouds from aerosol and gas
- Comparison by Tad Anderson et al. shows strong correlation between lidar reflectivity and colocated CERES albedo retrievals for warm clouds

Marine Boundary Layer Warm Clouds: Simulated Albedo Distributions

• Averaging nearly-clear and overcast looks nothing like broken sky cover distribution

Albedo Dependence on Aerosol Concentration for Broken Sky Cover

- Large-scale models combine clear and cloudy albedos for partly-cloudy skies
- Doing so can bias albedo dependence on N high or low

Emulation of MODIS and AERONET Cloud Filters

- Little to none of the cloud-free area survives MODIS filter used for aerosol retrievals
 ⇒ aerosols actually colocated with clouds in correlation studies?
- Cloud cover dependence on aerosol exaggerated using AERONET filter, which mistakes thickening haze for increasing cloudiness

Simulations of Marine Boundary Layer Mixed-Phase Clouds

Model Description: Ice Formation

Mechanism	Temp, C	Supersat	Dependence	Description
Primary modes				
contact	-4 > T > -14		$f_{lin}(T)$	drop + IN $_{aer} \rightarrow ice$
condensation	-8 > T > -22	$S_w < S$	$f_{lin}(T)$	$IN_{aer} \rightarrow ice$
deposition	-10 > T	${\sf S}_i < {\sf S} < 0.3$	$f_{exp}(S)$	$IN_{aer} ightarrow ice$
immersion	-10 > T > -24	—	$f_{lin}(T)$	drop + $IN_{drop} \rightarrow ice$
Multiplication				
rime-splintering	-3 > T > -8	—	$f_{lin}(T)$	crystal per 250 collisions
drop shattering	0 > T	—	$D_{drop}~>$ 50 μm	multiplication factor = 2
ice fragmentation	0 > T	—	$f_{lin}(\Delta mom^2)$	up to 20–60 fragments
Other processes				
evaporation nuclei	0 > T	$S < S_w$	_	$1/10^4 \text{ drops} \rightarrow \text{IN}_{aer}$
charge enhancement	0 > T	—	$f(D_{dron})$	drop charge retained
evaporation freezing	0 > T	$S < S_w$	<u> </u>	'some' drops 'just freeze'

Measurements